Part Number Hot Search : 
03953 COM200 IRF730 IC7221 DQ8020 00KA5W 1512D 1376I
Product Description
Full Text Search
 

To Download VN800S13TR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 (R)
VN800S / VN800PT
HIGH SIDE DRIVER
TYPE VN800S VN800PT
s s
RDS(on) 135 m
IOUT 0.7 A
VCC 36 V
CMOS COMPATIBLE INPUT THERMAL SHUTDOWN s CURRENT LIMITATION s SHORTED LOAD PROTECTION s UNDERVOLTAGE AND OVERVOLTAGE SHUTDOWN s PROTECTION AGAINST LOSS OF GROUND s VERY LOW STAND-BY CURRENT
s
SO-8
PPAK
ORDER CODES
PACKAGE TUBE T&R
REVERSE BATTERY PROTECTION (*)
SO-8 PPAK
VN800S VN800PT
VN800S13TR VN800PT13TR
DESCRIPTION The VN800S, VN800PT are monolithic devices made by using STMicroelectronics VIPower M0-3 Technology, intended for driving any kind of load with one side connected to ground. Active VCC pin voltage clamp protects the device against low energy spikes. Active current limitation combined with thermal shutdown and BLOCK DIAGRAM
automatic restart protect the device against overload. Device automatically turns off in case of ground pin disconnection. This device is especially suitable for industrial applications in norms conformity with IEC1131 (Programmable Controllers International Standard).
VCC
VCC CLAMP
OVERVOLTAGE DETECTION UNDERVOLTAGE DETECTION
GND Power CLAMP
DRIVER INPUT LOGIC CURRENT LIMITER OUTPUT
STATUS OVERTEMPERATURE DETECTION
(*) See note at page 7
Rev. 1
1/22
July 2004
1
VN800S / VN800PT
ABSOLUTE MAXIMUM RATING
Symbol VCC - VCC - IGND IOUT - IOUT IIN VIN VSTAT Parameter DC Supply Voltage Reverse DC Supply Voltage DC Reverse Ground Pin Current DC Output Current Reverse DC Output Current DC Input Current Input Voltage Range DC Status Voltage Electrostatic Discharge (Human Body Model: R=1.5K; C=100pF) - INPUT VESD - STATUS - OUTPUT Ptot EMAX EMAX Tj Tc Tstg Lmax - VCC Power Dissipation TC=25C Maximum Switching Energy (L=77.5mH; RL=0; Vbat=13.5V; Tjstart=150C; IL=1.5A) Maximum Switching Energy (L=125mH; RL=0; Vbat=13.5V; Tjstart=150C; IL=1.5A) Junction Operating Temperature Case Operating Temperature Storage Temperature Max Inductive Load (VCC=30V; ILOAD=0.5A; Tamb=100C; Rthcase>ambient25C/W) 4.2 121 195 Internally Limited - 40 to 150 - 55 to 150 2 Value SO-8 PPAK 41 - 0.3 - 200 Internally Limited -6 +/- 10 -3/+VCC + VCC 4000 4000 5000 5000 41.7 Unit V V mA A A mA V V V V V V W mJ mJ C C C H
CONFIGURATION DIAGRAM (TOP VIEW) & SUGGESTED CONNECTIONS FOR UNUSED AND N.C. PINS
VCC
5
VCC OUTPUT OUTPUT VCC
5
4
N.C. STATUS INPUT
OUTPUT STATUS INPUT GND
Connection / Pin Status Floating To Ground X
N.C. X X
Output X
Input X Through 10K resistor
4 3 2 1
8
1
GND
SO-8
PPAK
CURRENT AND VOLTAGE CONVENTIONS
IS VF IIN INPUT ISTAT STATUS GND VIN VSTAT IGND VOUT OUTPUT IOUT VCC
VCC
2/22
1
VN800S / VN800PT
THERMAL DATA
Symbol Rthj-case Rthj-lead Rthj-amb Parameter Thermal Resistance Junction-case Thermal Resistance Junction-lead Thermal Resistance Junction-ambient Value SO-8 PPAK 3 78 (3) 45 (4) Unit C/W C/W C/W C/W
Max Max Max Max
30 93 (1) 82 (2)
(1) When mounted on FR4 printed circuit board with 0.5 cm2 of copper area (at least 35 thick) connected to all V CC pins. (2) When mounted on FR4 printed circuit board with 2 cm2 of copper area (at least 35 thick). (3) When mounted on FR4 printed circuit board with 0.5 cm2 of copper area (at least 35 thick) connected to all V CC pins. (4) When mounted on FR4 printed circuit board with 6 cm2 of copper area (at least 35 thick).
ELECTRICAL CHARACTERISTICS (8VSymbol VCC VUSD VOV RON Parameter Operating Supply Voltage Undervoltage Shut-down Overvoltage Shut-down On State Resistance Test Conditions Min 5.5 3 36 Typ 4 42 Max 36 5.5 135 10 1.5 270 20 3.5 2.6 1 50 5 3 Unit V V V m m A mA mA mA A A A
IOUT =0.5A; Tj=25C IOUT =0.5A Off State; VCC=24V; Tcase=25C On State; VCC=24V On State; VCC=24V; Tcase=100C VCC=VSTAT=VIN=VGND=24V;VOUT=0V VIN=VOUT=0V VIN=VOUT=0V; VCC=13V; Tj =125C VIN=VOUT=0V; VCC=13V; Tj =25C
IS ILGND IL(off1) IL(off2) IL(off3)
Supply Current Output Current at turn-off Off State Output Current Off State Output Current Off State Output Current
0
SWITCHING (V CC=24V)
Symbol td(on) td(off) dVOUT/ dt(on) dVOUT/ dt(off) Parameter Turn-on Delay Time Turn-off Delay Time Turn-on Voltage Slope Test Conditions RL=48 from VIN rising edge to VOUT=2.4V RL=48 from VIN falling edge to VOUT=21.6V RL=48 from VOUT=2.4V to VOUT=19.2V RL=48 from VOUT=21.6V to VOUT=2.4V Min Typ 10 40 See relative diagram See relative diagram Max Unit s s V/s
Turn-off Voltage Slope
V/s
INPUT PIN
Symbol VINL IINL VINH IINH VI(hyst) IIN Parameter Input Low Level Low Level Input Current Input High Level High Level Input Current Input Hysteresis Voltage Input Current Test Conditions VIN=1.25V VIN=3.25V 0.5 VIN=VCC=36V 200 Min 1 3.25 10 Typ Max 1.25 Unit V A V A V A
3/22
1
VN800S / VN800PT
ELECTRICAL CHARACTERISTICS (continued) VCC - OUTPUT DIODE
Symbol VF Parameter Forward on Voltage Test Conditions -IOUT=0.6A; Tj=150C Min Typ Max 0.7 Unit V
STATUS PIN
Symbol VSTAT ILSTAT CSTAT Parameter Status Low Output Voltage Status Leakage Current Status Pin Input Capacitance Test Conditions ISTAT =1.6 mA Normal Operation; VSTAT=VCC=36 V Normal Operation; VSTAT= 5V Min Typ Max 0.5 10 30 Unit V A pF
PROTECTIONS (see note 1)
Symbol TTSD TR Thyst TSDL Ilim Vdemag Parameter Shut-down Temperature Reset Temperature Thermal Hysteresis Status Delay in Overload Condition DC Short Circuit Current Turn-off Output Clamp Voltage Test Conditions Min 150 135 7 Typ 175 15 20 0.7 2 Max 200 Unit C C C s A V
Tj>Tjsh VCC=24V; RLOAD=10m IOUT =0.5 A; L=6mH
VCC-47 VCC-52 VCC-57
Note 1: To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device operates under abnormal conditions this software must limit the duration and number of activation cycles.
OVERTEMP STATUS TIMING VIN Tj>Tjsh
VSTAT tSDL tSDL
4/22
2
VN800S / VN800PT
Switching time Waveforms
VOUT
80% dVOUT/dt(on) tr 10%
90% dVOUT/dt(off) tf t
VIN
td(on)
td(off)
t
TRUTH TABLE
CONDITIONS Normal Operation Current Limitation Overtemperature Undervoltage Overvoltage INPUT L H L H H L H L H L H OUTPUT L H L X X L L L L L L STATUS H H H (Tj < TTSD) H (Tj > TTSD) L H L X X H H
5/22
VN800S / VN800PT
Figure 1: Peak Short Circuit Current Test Circuit
+VCC
10k
VCC
STATUS CONTROL UNIT INPUT RIN GND
OUTPUT
RL=10m
GND
Figure 2: Avalanche Energy Test Circuit
+VCC
10k
VCC
STATUS CONTROL UNIT INPUT RIN GND
OUTPUT
LOAD
GND
6/22
VN800S / VN800PT
APPLICATION SCHEMATIC
VCC
5V Volt. Reg
Control & Diagnostic I/O
VCC 24VDC
Rprot
STATUSn
Rprot INPUTn BUS ASIC
OUTPUTn LOAD R
GND
L DGND
VGND
RGND
GND PROTECTION REVERSE BATTERY
NETWORK
AGAINST
Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND 600mV / (IS(on)max). 2) RGND (-VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device's datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below).
Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1k) should be inserted in parallel to DGND if the device will be driving an inductive load. This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. Series resistor in INPUT and STATUS lines are also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating. Safest configuration for unused INPUT and STATUS pin is to leave them unconnected. C I/Os PROTECTION: If a ground protection network is used and negative transients are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the C I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of C and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of C I/Os. -VCCpeak/Ilatchup Rprot (VOHC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup 20mA; VOHC 4.5V 5k Rprot 65k. Recommended Rprot value is 10k. 7/22
VN800S / VN800PT
Figure 3: Waveforms
NORMAL OPERATION INPUT LOAD VOLTAGE STATUS UNDERVOLTAGE VCC VUSD INPUT LOAD VOLTAGE STATUS undefined VUSDhyst
OVERVOLTAGE VCCVOV
Tj INPUT LOAD CURRENT STATUS
TTSD TR
OVERTEMPERATURE
8/22
VN800S / VN800PT
Off State Output Current
IL(off1) (A)
2.5 2.25 2 1.75 1.5 1.25 1 0.75 2 0.5 0.25 0 -50 -25 0 25 50 75 100 125 150 175 1 0 -50 -25 0 25 50 75 100 125 150 175
High Level Input Current
Iih (A)
8 7
Off state Vcc=36V Vin=Vout=0V
Vin=3.25V
6 5 4 3
Tc (C)
Tc (C)
Status Leakage Current
Ilstat (A)
0.1 0.09
ILIM Vs Tcase
Ilim (A)
2.5 2.25
Vstat=Vcc=36V
0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 -50 -25 0 25 50 75 100 125 150 175
2 1.75 1.5 1.25 1 0.75 0.5 0.25 0 -50 -25
Vcc=24V Rl=10mOhm
0
25
50
75
100
125
150
175
Tc (C)
Tc (C)
On State Resistance Vs Tcase
Ron (mOhm)
400 350 300 250 200 150 100 50 0 -50 -25 0 25 50 75 100 125 150 175
On State Resistance Vs V CC
Ron (mOhm)
400 350
Iout=0.5A Vcc=8V; 13V; 36V
Iout=0.5A
300 250
Tc= 150C
200 150
Tc= 25C
100 50 0 5 10 15 20 25 30 35 40
Tc= - 40C
Tc (C)
Vcc (V)
9/22
VN800S / VN800PT
Input High Level
Vih (V)
3.6 3.4 3.2 3 2.8 2.6 2.4 2.2 2 -50 -25 0 25 50 75 100 125 150 175
Input Low Level
Vil (V)
2.6 2.4 2.2 2 1.8 1.6 1.4 1.2 1 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
Input Hysteresis Voltage
Vhyst (V)
1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 -50 -25 0 25 50 75 100 125 150 175
Overvoltage Shutdown
Vov (V)
50 48 46 44 42 40 38 36 34 32 30 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
Turn-on Voltage Slope
dVout/dt(on) (V/ms)
1600
Turn-off Voltage Slope
dVout/dt(off) (V/ms)
800 700
1
1400 1200 1000 800 600 400 200 0 -50 -25 0 25 50 75 100 125 150 175
Vcc=24V Rl=48Ohm
600 500 400 300 200 100 0 -50
Vcc=24V Rl=48Ohm
-25
0
25
50
75
100
125
150
175
Tc (C)
Tc (C)
10/22
VN800S / VN800PT
PPAK Maximum turn off current versus load inductance
ILMAX (A) 10
A B
1
C
0.1 1 10 L(mH)
A = Single Pulse at TJstart=150C B= Repetitive pulse at T Jstart=100C C= Repetitive Pulse at T Jstart=125C Conditions: VCC=13.5V Values are generated with R L=0 In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. VIN, IL Demagnetization Demagnetization Demagnetization
100
1000
t
11/22
VN800S / VN800PT
SO-8 Maximum turn off current versus load inductance
ILMAX (A) 10
1
A B C
0.1 1 10 L(mH )
A = Single Pulse at TJstart=150C B= Repetitive pulse at T Jstart=100C C= Repetitive Pulse at T Jstart=125C Conditions: VCC=13.5V Values are generated with R L=0 In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. VIN, IL Demagnetization Demagnetization Demagnetization
100
1000
t
12/22
VN800S / VN800PT
SO-8 THERMAL DATA
SO-8 PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm, Cu thickness=35m, Copper areas: 0.14cm2, 2cm2).
Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb (C/W)
SO8 at 2 pins connected to TAB
110 105 100 95 90 85 80 75 70 0 0.5 1 1.5 2 2.5
PCB Cu heatsink area (cm^2)
13/22
VN800S / VN800PT
PPAK THERMAL DATA
PPAK PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 60mm x 60mm, PCB thickness=2mm, Cu thickness=35m, Copper areas: 0.44cm2, 8cm2).
Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb (C/W)
90 80 70 60 50 40 30 20 10 0 0 2 4 6 8 10
PCB Cu heatsink area (cm^2)
14/22
VN800S / VN800PT
SO-8 Thermal Impedance Junction Ambient Single Pulse
ZT H (C/W) 1000
100
0.5 cm2 2 cm2
10
1
0.1 0.0001 0.001 0.01 0.1 1 T ime (s) 10 100 1000
Thermal fitting model of a single channel HSD in SO-8
Pulse calculation formula
Z TH = R TH + Z T Htp ( 1 - )
where
= tp T
0.14 0.24 1.2 4.5 21 16 58 0.00015 0.0005 7.50E-03 0.045 0.35 1.05 2
Thermal Parameter
Area/island (cm2) R1 (C/W) R2 (C/W) R3 ( C/W) R4 (C/W) R5 (C/W) R6 (C/W) C1 (W.s/C) C2 (W.s/C) C3 (W.s/C) C4 (W.s/C) C5 (W.s/C) C6 (W.s/C)
Tj
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
28
T_amb
2
15/22
VN800S / VN800PT
PPAK Thermal Impedance Junction Ambient Single Pulse
ZTH (C/W) 1000
100
0.44 cm2 6 cm2
10
1
0.1 0.0001 0.001 0.01 0.1 1 Time (s) 10 100 1000
Thermal fitting model of a single channel HSD in PPAK
Pulse calculation formula
Z TH = R TH + Z THtp ( 1 - )
where
= tp T
0.44 0.04 0.25 0.3 2 15 61 0.0008 0.007 0.02 0.3 0.45 0.8 6
Thermal Parameter
Area/island (cm2) R1 (C/W) R2 (C/W) R3 ( C/W) R4 (C/W) R5 (C/W) R6 (C/W) C1 (W.s/C) C2 (W.s/C) C3 (W.s/C) C4 (W.s/C) C5 (W.s/C) C6 (W.s/C)
Tj
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
24
T_amb
5
16/22
VN800S / VN800PT
SO-8 MECHANICAL DATA
mm. MIN. 0.1 0.65 0.35 0.19 0.25 4.8 5.8 1.27 3.81 3.8 0.4 4 1.27 0.6 8 (max.) 0.8 1.2 0.031 0.047 0.14 0.015 TYP MAX. 1.75 0.25 1.65 0.85 0.48 0.25 0.5 45 (typ.) 5 6.2 0.188 0.228 0.050 0.150 0.157 0.050 0.023 0.196 0.244 0.025 0.013 0.007 0.010 0.003 MIN. inch TYP. MAX. 0.068 0.009 0.064 0.033 0.018 0.010 0.019
DIM. A a1 a2 a3 b b1 C c1 D E e e3 F L M S L1
17/22
VN800S / VN800PT
PPAK MECHANICAL DATA
DIM. A A1 A2 B B2 C C2 D1 D E E1 e G G1 H L2 L4 R V2 Package Weight 0 Gr. 0.3 0.60 0.2 8 4.90 2.38 9.35 0.8 6.00 6.40 4.7 1.27 5.25 2.70 10.10 1.00 1.00 MIN. 2.20 0.90 0.03 0.40 5.20 0.45 0.48 5.1 6.20 6.60 TYP MAX. 2.40 1.10 0.23 0.60 5.40 0.60 0.60
P032T1
18/22
VN800S / VN800PT
SO-8 TUBE SHIPMENT (no suffix)
B
C
A
Base Q.ty Bulk Q.ty Tube length ( 0.5) A B C ( 0.1)
All dimensions are in mm.
100 2000 532 3.2 6 0.6
TAPE AND REEL SHIPMENT (suffix "13TR") REEL DIMENSIONS
Base Q.ty Bulk Q.ty A (max) B (min) C ( 0.2) F G (+ 2 / -0) N (min) T (max) 2500 2500 330 1.5 13 20.2 12.4 60 18.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 ( 0.1) P D ( 0.1/-0) D1 (min) F ( 0.05) K (max) P1 ( 0.1) 12 4 8 1.5 1.5 5.5 4.5 2
End
All dimensions are in mm.
Start Top cover tape 500mm min Empty components pockets saled with cover tape. User direction of feed 500mm min No components Components No components
19/22
VN800S / VN800PT
PPAK TUBE SHIPMENT (no suffix)
A C
B
Base Q.ty Bulk Q.ty Tube length ( 0.5) A B C ( 0.1)
All dimensions are in mm.
75 3000 532 6 21.3 0.6
TAPE AND REEL SHIPMENT (suffix "13TR") REEL DIMENSIONS
Base Q.ty Bulk Q.ty A (max) B (min) C ( 0.2) F G (+ 2 / -0) N (min) T (max) 2500 2500 330 1.5 13 20.2 16.4 60 22.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 ( 0.1) P D ( 0.1/-0) D1 (min) F ( 0.05) K (max) P1 ( 0.1) 16 4 8 1.5 1.5 7.5 6.5 2
End
All dimensions are in mm.
Start Top cover tape No components 500mm min Empty components pockets saled with cover tape. User direction of feed 500mm min Components No components
20/22
1
VN800S / VN800PT
REVISION HISTORY
Date Revision Description of Changes - Current and voltage convention update (page 2). - "Configuration diagram (top view) & suggested connections for unused and n.c. pins" insertion (page 2). Jul. 2004 1 - 6cm2 Cu condition insertion in Thermal Data table (page 3). - VCC - OUTPUT DIODE section update (page 4). - PROTECTIONS note insertion (page 4). - Revision History table insertion (page 21). - Disclaimers update (page 22).
21/22
1
VN800S / VN800PT
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics (c) 2004 STMicroelectronics - Printed in ITALY- All Rights Reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com
22/22


▲Up To Search▲   

 
Price & Availability of VN800S13TR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X